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Abstract

In this paper, by using the Poincaré compactification in R
3 we make a global

analysis of the Lorenz system, including the complete description of its
dynamic behavior on the sphere at infinity. Combining analytical and numerical
techniques we show that for the parameter value b = 0 the system presents
an infinite set of singularly degenerate heteroclinic cycles, which consist of
invariant sets formed by a line of equilibria together with heteroclinic orbits
connecting two of the equilibria. The dynamical consequences related to the
existence of such cycles are discussed. In particular a possibly new mechanism
behind the creation of Lorenz-like chaotic attractors, consisting of the change
in the stability index of the saddle at the origin as the parameter b crosses the
null value, is proposed. Based on the knowledge of this mechanism we have
numerically found chaotic attractors for the Lorenz system in the case of small
b > 0, so nearby the singularly degenerate heteroclinic cycles.

PACS numbers: 05.45.−a, 05.45.Pq, 02.40.Vh
Mathematics Subject Classification: 37C10, 37C29, 37C70

(Some figures in this article are in colour only in the electronic version)

1. Introduction and statement of the results

In this work we make a global analysis of the Lorenz system, given by

ẋ = σ(y − x), ẏ = rx − y − xz, ż = −bz + xy, (1)

where the state variables (x, y, z) ∈ R
3 and σ, r and b are real parameters. As usual the dots

denote derivative with respect to the time t. System (1) was proposed by the meteorologist
Lorenz in 1963 in the study of thermal fluid convection in the atmosphere, related to the
question of long-term weather forecasts, see [9]. There are hundreds of papers concerning the
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Figure 1. The ‘standard’ Lorenz attractor.

Figure 2. Singularly degenerate heteroclinic cycles of the Lorenz system.

rich dynamical behavior of system (1), see for instance [13] and the more recent work [14] for
good reviews on the subject. Most of them consider strictly positive values for the parameters
σ, r and b due to their physical meaning. For the classical values σ = 10, r = 28 and b = 8/3
the system presents the famous butterfly shaped chaotic attractor shown in figure 1.

For b small and positive (indeed b = 0.25) system (1) was studied in chapter 8 of [13],
where spiraling behavior of the solutions around the z-axis was described. Also, complex
dynamics were observed for large values of the parameter r (r � 80).

In the case of b = 0, σ near the classical value 10 and for sufficiently large r (actually,
r → ∞) system (1) was analyzed by Kokubu and Roussarie in [7]. In that work the
authors proved for a family of three-dimensional ODEs that contains as its subfamily the
Lorenz system, the existence of one specific type of heteroclinic cycle, called the singularly
degenerate heteroclinic cycle. It consists of an invariant set formed by a line of equilibria
together with a heteroclinic orbit connecting two of the equilibria (see figure 2). In the case of
the Lorenz system studied in [7] the line of equilibria is given by the z-axis, one of the equilibria
is the origin and the other one is given by (0, 0, z∗) with z∗ sufficiently large (actually, z∗ near
infinity).
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Since the proposal of system (1), several three-dimensional systems of polynomial
nonlinear ODEs have been thought about, arising from physical or purely abstract contexts,
whose solutions exhibit chaotic dynamics of the Lorenz system type, clearly distinguished
by the existence of butterfly shaped attractors. As examples, we can refer to the second
Rossler system, Shimizu–Morioka system (see [7] and references therein), Rikitake system
[12], Rabinovich system [8, 11] and several others which will pop up in a MathSciNet or
Google Scholar search under the word ‘Lorenz’. Because it is one of the first chaotic systems
extensively studied, one can say that the Lorenz system has become synonymous with the
chaotic system as well as the Lorenz attractor of a strange attractor, even though several
different mathematical definitions for these objects can be found in the literature. These
types of chaotic systems are commonly called Lorenz-like systems, although the reason for the
apparent similarity of their complex dynamics is far from understood.

It was within this context that the authors of [7] suggested, making a comparison with the
chaotic Henon map [6], that a basic structure given by some type of ‘singular limit’ could exist
from which the generation of interesting chaotic dynamics could be conceptually understood
in all of the Lorenz-like systems. According to the ideas in [7], for the Henon map such a
singular structure is rather clear from the expression of the map itself, whereas for the Lorenz
system it is not at all obvious what could be such a singular limit, because there can be seen no
singular structure from the equations which determine the system. So the authors suggest that,
possibly, such a ‘singular’ and mathematically understandable structure could be provided by
the singularly degenerate heteroclinic cycle they have proven to exist for a system equivalent
to the Lorenz one, in the case of b = 0, r → ∞ and bounded σ . They also have observed
that, due to its degeneracy, the singularly degenerate heteroclinic cycle possibly has a great
potential of producing a rich variety of dynamics as shown in the Lorenz system (for more
details, see [7], p 527).

In this paper we consider the original Lorenz system (1), instead of an equivalent one,
for which we show, combining analytical and numerical studies, that the ‘singular structure’
behind the solutions of system (1) with b = 0 is much more complex than that described in [7].
More precisely, by using the Poincaré compactification for the global analysis of system (1),
we give a complete description of its dynamical behavior on the sphere at infinity and make
a study of the dynamics in a neighborhood of the infinity. Based on the knowledge of such
global structure we carry out a careful numerical analysis of its solutions. The results obtained
allow us to conclude that for the parameter values b = 0, σ > 1 and r > 1 (not necessarily
large) the system presents an infinite set of singularly degenerate heteroclinic cycles, instead
of the only one connecting the saddle at the origin with the equilibrium (0, 0, z∗) proved to
exist in [7]. Furthermore, we show analytically that a small perturbation in the parameters,
simply by considering b �= 0 small, destroys all these singularly degenerate heteroclinic
cycles and produces two infinite heteroclinic orbits, which consist of two solutions contained
in the z-axis connecting the saddle at the origin with equilibrium points at infinity. Also,
we numerically found strange attractors for small values of b; hence nearby the singularly
degenerate heteroclinic cycles, for several values of the parameters r > 1 and bounded σ > 1
(see figure 3 and also section 5).

The main results in this paper are summarized in the following theorems.

Theorem 1. For all values of the parameters r, σ, b ∈ R the phase portrait of system (1)
on the sphere at infinity is as shown in figure 4: there exist two centers in the positive and
negative endpoints of the x-axis and a circle of equilibria containing the endpoints of the y-
and z-axis.
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Figure 3. (a) Strange attractor of system (1) for the parameter values b = 0.15, σ = 2.3 and
r = 200. (b) Spiraling behavior of the unstable invariant manifolds of the saddle at the origin
around the z-axis, before tending towards the attractor shown in (a).
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Figure 4. Phase portrait of system (1) at infinity.

It is important to note that the dynamics at infinity do not depend on the parameter values,
since the parameters appear only in the linear terms of system (1).

Theorem 2. The following statements hold for the Lorenz system (1).

(a) For b = 0 and all r, σ ∈ R, system (1) has a line of semi-hyperbolic equilibria, given by
the z-axis. Consider σ > 0 and r > 1. Then for z < r − 1 the equilibria P � = (0, 0, z)

are saddles normally hyperbolic to the z-axis, that is the linearized system at P � has two
real eigenvalues with opposite signs and the corresponding one-dimensional stable and

unstable manifolds are normal to the z-axis; for z > r − 1 +
(1 + σ)2

4σ
the equilibria

Q� = (0, 0, z) are stable foci normally hyperbolic to the z-axis, that is the linear part
of system (1) at Q� has complex conjugate eigenvalues with negative real part and
corresponding two-dimensional stable manifolds normal to the z-axis.

4



J. Phys. A: Math. Theor. 42 (2009) 115101 M Messias

Figure 5. Infinite heteroclinic orbits of system (1) for b < 0 (left) and b > 0 (right). For
b = 0 the system has singularly degenerate heteroclinic cycles (center). The boundary of the disks
correspond to the points at infinity in the plane yz, see figure 4.

(b) For b �= 0, system (1) has two infinite heteroclinic orbits, one of them consisting of the
origin (0, 0, 0), the positive portion of the z-axis and of one equilibrium on the sphere at
infinity (the endpoint of the positive z-axis); the other consists of the origin, the negative
part of the z-axis and of one equilibrium on the sphere at infinity (the endpoint of the
negative z-axis). Moreover, if b > 0 the origin is asymptotically stable along the z-axis
while for b < 0 the origin is unstable (see figure 5).

Based on the results stated in these theorems and through a detailed numerical study we
may state the following result.

Numerical Result 3. For b = 0, r > 1 and σ > 1 the one-dimensional unstable manifolds
Wu(P �) of each normally hyperbolic saddle P � given in part (a) of theorem 2 tend toward
one of the normally hyperbolic stable foci Q� as t → +∞, forming singularly degenerate
heteroclinic cycles (see figures 2 and 10).

Numerical result 3 implies that the Lorenz system with b = 0 has an infinite set of
singularly degenerate heteroclinic cycles instead of the only one proved to exist in [7]. These
cycles are studied in section 4.

Furthermore, based on the analytical and numerical results obtained, one can say that,
beyond the existence of the singularly degenerate heterolinic cycles themselves, there is a
mechanism which plays an important role in the creation of Lorenz-like strange attractors.
This mechanism is the change in the stability index of the saddle at the origin when the
parameter b crosses the zero value and the degenerate cycles are created. In fact, it is easy
to check that, for b < 0, the origin is a saddle with a two-dimensional unstable and a one-
dimensional stable manifolds (that is, stability index equal to 1); in this case the origin is
unstable along the invariant z-axis and consequently the non-vanishing solutions on this axis
escape to infinity as t → +∞ (see figure 5). For b = 0, the z-axis becomes a line of
equilibria and the singularly degenerate heterolinic cycles are created. For b > 0, the origin
is a saddle with a two-dimensional stable and a one-dimensional unstable manifolds (that is,
stability index equal to 2); in this case the origin becomes stable along the invariant z-axis (see
figure 5 again). Furthermore, for b > 0 small two new stable equilibria arise as well as the
origin, which are given by (see [13])

Q± = (±
√

b(r − 1),±
√

b(r − 1), r − 1)).
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This change in the stability index of the origin, in addition to the creation of the two new
equilibria, makes the unbounded solutions which tend to infinity come back to a neighborhood
of the origin, tending initially to these stable equilibria and then to the bounded strange
attractor, as b is varied. Indeed, if b < 0 it is impossible for an ellipsoid bounding the
solutions of system (1) to exist, since the non-vanishing solutions on the z-axis escape to
infinity. On the other hand, such an ellipsoid does exist for b > 0, under certain conditions
on the parameters values, as described for example, in [4] and [13]. This ellipsoid contains a
strange attractor, when it exists.

The existence of an infinite set of singularly degenerate heteroclinic cycles and the
occurrence of strange attractors nearby have recently been described in [8] and [10] in the
study of other quadratic nonlinear systems of ODEs in R

3.
Finally we observe that the aim of the present work is, through a global analysis by

using the Poincaré compactification combined with a numerical study, to bring a contribution
in the understanding of the Lorenz system with small b, which is in general a hard task.
Indeed, as said in Sparrow’s book [13], p 177: ‘the Lorenz system for small b is one of
the most complicated three-dimensional chaotic systems of ordinary differential equations
ever observed (if not the most), and attempts at complete understanding are almost certainly
doomed’. Moreover, although being applied only to the analysis of the Lorenz system, the
techniques used in this note may be applied in the analysis of other polynomial differential
systems and we believe that they provide useful tools for the understanding of dynamical
phenomena in the state space R

3.
The paper is organized as follows: in section 2 for the sake of completeness we present

the Poincaré compactification for a polynomial vector field in R
3, which allows us to study in

section 3 the dynamics of the Lorenz system in a neighborhood of and on the sphere at infinity
and consequently to prove theorem 1. Based on the knowledge of the dynamical behavior
near and at infinity, in section 4 we prove theorem 2 and present the numerical study which
leads to numerical result 3. Finally, in section 5 numerically computed strange attractors for
small values of the parameter b are presented.

2. Poincaré compactification in R
3

A polynomial vector field X in R
n can be extended to a unique analytic vector field on the sphere

S
n. The technique for making such an extension is called the Poincaré compactification and

allows us to study a polynomial vector field in a neighborhood of infinity, which corresponds
to the equator S

n−1 of the sphere S
n. Poincaré introduced this compactification for polynomial

vector fields in R
2. Its extension to R

n for n > 2 can be found in [3]. In this section, we
describe the Poincaré compactification for polynomial vector fields in R

3 following closely
what is made in [3].

In R
3 we consider the polynomial differential system

ẋ = P 1(x, y, z), ẏ = P 2(x, y, z), ż = P 3(x, y, z),

or equivalently its associated polynomial vector field X = (P 1, P 2, P 3). The degree n of X is
defined as n = max{deg(P i) : i = 1, 2, 3}.

Let S
3 = {y = (y1, y2, y3, y4) ∈ R

4 : ‖y‖ = 1} be the unit sphere in R
4, and

S+ = {y ∈ S
3 : y4 > 0} and S− = {y ∈ S

3 : y4 < 0} be the northern and southern
hemispheres of S

3, respectively. The tangent space to S
3 at the point y is denoted by TyS

3.
Then the tangent plane

T(0,0,0,1)S
3 = {(x1, x2, x3, 1) ∈ R

4 : (x1, x2, x3) ∈ R
3}

is identified with R
3.

6
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We consider the central projections f+ : R
3 = T(0,0,0,1)S

3 −→ S+ and f− : R
3 =

T(0,0,0,1)S
3 −→ S− defined by f±(x) = ±(x1, x2, x3, 1)/�x, where �x = (

1 +
∑3

i=1 x2
i

)1/2
.

Through these central projections R
3 is identified with the northern and southern hemispheres

of S
3. The equator of S

3 is S
2 = {y ∈ S

3 : y4 = 0}. Clearly S
2 can be identified with the

infinity of R
3.

The maps f+ and f− define two copies of X on S
3, one Df+ ◦X in the northern hemisphere

and the other Df− ◦X in the southern one. Denoted by X the vector field on S
3 \S

2 = S+ ∪S−
which, restricted to S+ coincides with Df+ ◦ X and restricted to S− coincides with Df− ◦ X.

The expression for X(y) on S+ ∪ S− is

X(y) = y4

⎛
⎜⎜⎜⎜⎝

1 − y2
1 −y2y1 −y3y1

−y1y2 1 − y2
2 −y3y2

−y1y3 −y2y3 1 − y2
3

−y1y4 −y2y4 −y3y4

⎞
⎟⎟⎟⎟⎠

⎛
⎝

P 1

P 2

P 3

⎞
⎠ ,

where P i = P i (y1/|y4|, y2/|y4|, y3/|y4|). Written in this way X(y) is a vector field in R
4

tangent to the sphere S
3.

Now we can extend analytically the vector field X(y) to the whole sphere S
3 by

p(X)(y) = yn−1
4 X(y). This extended vector field p(X) is called the Poincaré compactification

of X on S
3.

As S
3 is a differentiable manifold in order to compute the expression for p(X) we can

consider the eight local charts (Ui, Fi), (Vi,Gi), where Ui = {y ∈ S
3 : yi > 0} and

Vi = {y ∈ S
3 : yi < 0} for i = 1, 2, 3, 4; the diffeomorphisms Fi : Ui → R

3 and
Gi : Vi → R

3 for i = 1, 2, 3, 4 are the inverses of the central projections from the origin
to the tangent planes at the points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0) and (0, 0, 0,±1),
respectively. Now we do the computations on U1. Suppose that the origin (0, 0, 0, 0),
the point (y1, y2, y3, y4) ∈ S

3 and the point (1, z1, z2, z3) in the tangent plane to S
3 at

(1, 0, 0, 0) are collinear. Then we have 1/y1 = z1/y2 = z2/y3 = z3/y4, and consequently
F1(y) = (y2/y1, y3/y1, y4/y1) = (z1, z2, z3) defines the coordinates on U1. As

DF1(y) =

⎛
⎜⎝

−y2/y
2
1 1/y1 0 0

−y3/y
2
1 0 1/y1 0

−y4/y
2
1 0 0 1/y1

⎞
⎟⎠

and yn−1
4 = (z3/�z)n−1, the analytical vector field p(X) becomes

zn
3

(�z)n−1
(−z1P

1 + P 2,−z2P
1 + P 3,−z3P

1),

where P i = P i (1/z3, z1/z3, z2/z3).
In a similar way we can deduce the expressions of p(X) in U2 and U3. These are

zn
3

(�z)n−1
(−z1P

2 + P 1,−z2P
2 + P 3,−z3P

2),

where P i = P i(z1/z3, 1/z3, z2/z3) in U2, and

zn
3

(�z)n−1
(−z1P

3 + P 1,−z2P
3 + P 2,−z3P

3),

where P i = P i(z1/z3, z2/z3, 1/z3) in U3.

7
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The expression for p(X) in U4 is zn+1
3 (P 1, P 2, P 3), now denoting P i = P i(z1, z2, z3).

The expression for p(X) in the local chart Vi is the same as in Ui multiplied by (−1)n−1.

When we work with the expression of the compactified vector field p(X) in the local
charts we usually omit the factor 1/(�z)n−1. We can do that through a rescaling of the time
variable.

In what follows, we shall work with the orthogonal projection of p(X) from the closed
northern hemisphere to y4 = 0, we continue denoting this projected vector field by p(X).
Note that the projection of the closed northern hemisphere is a closed ball B of radius one,
whose interior is diffeomorphic to R

3 and whose boundary S
2 corresponds to the infinity of

R
3. Of course p(X) is defined in the whole closed ball B in such a way that the flow on the

boundary is invariant. This new vector field on B will be called the Poincaré compactification
of X, and B will be called the Poincaré ball.

Remark 4. All the points on the invariant sphere S
2 at infinity in the coordinates of any local

chart Ui and Vi have z3 = 0. Also, the points in the interior of the Poincaré ball, which is
diffeomorphic to R

3, are given in the local charts U1, U2 and U3 by z3 > 0 and in the local
charts V1, V2 and V3 by z3 < 0. These half-spaces will be considered in the study of the flow
of system (1) in a neighborhood of the infinite sphere later on.

3. Behavior of system (1) near and at infinity

In this section we shall make an analysis of the flow of system (1) near and at infinity. In order
to do so in the following four subsections we shall analyze the Poincaré compactification of
the system in the local charts Ui and Vi, i = 1, 2, 3.

3.1. In the local charts U1 and V1

From the results of section 2 the expression of the Poincaré compactification p(X) of system
(1) in the local chart U1 is given by

ż1 = −z2 + rz3 − z1z3 − σz2
1z3 + σz1z3,

ż2 = z1 − bz2z3 + σz2z3 − σz1z2z3, (2)

ż3 = −σz2
3(z1 − 1).

For z3 = 0 (which corresponds to the points on the sphere S
2 at infinity) the unique

equilibrium point of (2) is (0, 0, 0) and the eigenvalues of the linear part of the system at this
point are i,−i and 0.

In general, the dynamics near a non-hyperbolic equilibrium point of this type can be rather
complex, see for instance [5]. Fortunately as a property of the compactification procedure, the
plane z1z2 is invariant under the flow of system (2), which makes the analysis on the sphere at
infinity simpler. Taking z3 = 0 equations (2) reduce to

ż1 = −z2, ż2 = z1, (3)

which has a linear center at the origin. Consequently system (1) has, after compactification, a
center on the sphere at infinity at the positive endpoint of the x-axis (see figure 4).

The flow in the local chart V1 is the same as the flow in the local chart U1 reversing the
time, because the compactified vector field p(X) in V1 coincides with the vector field p(X)

in U1 multiplied by −1 (for details see section 2). Hence system (1) also has a center on the
infinite sphere at the negative endpoint of the x-axis (see figure 4 again).

8
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Now we will study the dynamics of system (1) in a neighborhood of the infinite sphere
on the local charts U1 and V1, aiming to understand how the solutions come from and go to
infinity. In order to do so we will consider firstly z3 > 0 small (see remark 4). The unique
equilibrium point of (2) is p1 = (0, 0, 0) and the eigenvalues of the linearized system at this
point are i,−i and 0, the zero eigenvalue having eigenvector (0, r, 1). The pure imaginary
eigenvalues correspond to the center at infinity. Hence from the center manifold theorem (see
[1] or [2]) the system has a one-dimensional center manifold to p1 contained in the interior of
the ball diffeomorphic to R

3, corresponding to z3 > 0. The following proposition holds.

Proposition 5. The singular point p1 = (0, 0, 0) of system (2) is locally asymptotically
unstable along its one-dimensional center manifold.

Proof. Under the above considerations, from the center manifold theorem (see [1] or
[2]) it follows that system (2) has a one-dimensional center manifold to the singular point
p1 = (0, 0, 0), which is the graph of a function h : R → R

2 given by (z1, z2) = h(z3) =
(h1(z3), h2(z3)) satisfying the conditions

h(0) = (0, 0), Dh(0) = (0, r), (4)

and

ż1 − Dh1(z3)ż3 = 0, ż2 − Dh2(z3)ż3 = 0. (5)

Moreover the flow on this center manifold is governed by the one-dimensional equation

ż3 = −σz2
3(h1(z3) − 1). (6)

To understand the flow on this manifold we will obtain an approximation of the function h by
expanding it in Taylor series around z3 = 0 to the fourth order using conditions (4), that is

h1(z3) =
4∑

i=2

aiz
i
3 and h2(z3) = rz3 +

4∑
i=2

biz
i
3. (7)

Now from (5) and considering the expressions for ż1 and ż2 given by system (2) we have

−h2 + rz3 − h1z3 − σh2
1z3 + σh1z3 − Dh1

(−σz2
3(h1 − 1)

) = 0,

h1 − bh2z3 + σh2z3 − σh1h2z3 − Dh2
(−σz2

3(h1 − 1)
) = 0,

(8)

where h1 = h1(z3) and h2 = h2(z3) are provided by (7) and Dhi = h′
i (z3), i = 1, 2. Equating

the powers of z3 coefficients in (8) we obtain

a2 = br, a3 = 0 and a4 = −br(b + 2σ)(σ + 1)

b2 = 0, b3 = −br(σ + 1) and b4 = 0.

Then we have the following approximation for the central manifold h:

h(z3) = (h1(z3), h2(z3)),

where

h1(z3) = brz2
3 − br(σ + 1)(b + 2σ)z4

3 + O
(
z6

3

)

and

h2(z3) = rz3 − br(σ + 1)z3
3 + O

(
z5

3

)
.

Substituting the expression of h1(z3) into equation (6) it follows that the flow on the center
manifold is governed by the equation

ż3 = −σz2
3

[
brz2

3 − br(σ + 1)(b + 2σ)z4
3 + O

(
z6

3

) − 1
] = σz2

3 + O
(
z4

3

)
.
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Figure 6. Dynamics of system (1) near the sphere at infinity in the local charts U1 (a) and V1
(b): there are one-dimensional unstable center manifolds to the origin in both charts; the solutions
starting near the periodic orbits of the centers at infinity go far from them.

Since σ > 0 and we are considering z3 > 0 small, it implies that p1 is locally
asymptotically unstable along its center manifold. �

As the flow in the local chart V1 is the same as the flow in the local chart U1 reversing the
time (see section 2), under the same arguments stated above, we can deduce that the flow on
the center manifold of the origin in the local chart V1 is governed by the equation

ż3 = −σz2
3 + O

(
z4

3

)
.

Hence, as in the vicinity of the infinity in the local chart V3 we have z3 < 0 (see remark 4),
it implies that the origin on the local chart V1 is also locally asymptotically unstable along its
center manifold.

In short, the equilibria at infinity at the positive and negative endpoints of the x-axis are
unstable along their one-dimensional center manifolds. However this analysis is not enough
to describe completely the behavior of the solutions in a neighborhood of the infinite sphere
in the local charts U1 and V1. In fact, it could happen that a solution enter the infinity tending
to one of the periodic orbits of the centers at infinity. Then, in order to complete the analysis,
we have used numerical simulations for several values of the parameters and different initial
conditions, which indicate that the periodic orbits at infinity are normally unstable, that is any
solution starting in the interior of the Poincaré ball and near any periodic orbit of the centers
at infinity go far from them (see figure 6), following the behavior on the center manifolds
described above.

3.2. In the local charts U2 and V2

Again using the results stated in section 2 we have that the expression of the Poincaré
compactification p(X) of system (1) in the local chart U2 is given by

ż1 = σz3 + z1z3 − σz1z3 + z2
1z2 − rz2

1z3,

ż2 = z1 − bz2z3 + z1z
2
2 + z2z3 − rz1z2z3, (9)

ż3 = −z3(rz1z3 − z3 − z1z2).

If z3 = 0 system (9) has a line of equilibria given by the z2-axis and the linear part of the
system at these equilibria has three null eigenvalues. Using the invariance of the plane z1z2

under the flow of (9) we can completely describe the dynamics on the sphere at infinity. In
fact, if z3 = 0 the system reduces to

ż1 = z2
1z2, ż2 = z1 + z1z

2
2, (10)

10
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z1

z2

Figure 7. Phase portrait of system (10), which corresponds to the phase portrait of system (1) at
infinity in the local chart U1.

which is an integrable system, since if z1 �= 0 it has the first integral

H(z1, z2) = ln|z1| − 1
2 ln

(
1 + z2

2

)
.

Using this first integral and observing that system (10) has the z2-axis as a line of equilibria,
we have that the global phase portrait in the local chart U2 on the infinite sphere is as shown
in figure 7.

The flow in the local chart V2 is the same as the flow in the local chart U2 reversing the
time, because the compactified vector field p(X) in V2 coincides with the vector field p(X)

in U2 multiplied by −1. Hence the phase portrait on the chart V2 is the same as shown in
figure 7, reversing appropriately the time direction.

For z3 > 0 small, which correspond to the points in the interior of the Poincaré ball, the
solutions behave like those shown in figure 8.

3.3. In the local charts U3 and V3

The expression of the Poincaré compactification p(X) in the local chart U3 is

ż1 = σz2z3 − σz1z3 − z2
1z2 + bz1z3,

ż2 = −z1 − z2z3 + rz1z3 − z1z
2
2 + bz2z3, (11)

ż3 = z3(bz3 − z1z2).

For z3 = 0, system (11) reduces to equations (10) multiplied by −1 and hence the analysis
on the sphere at infinity is the same as the one made in the previous subsection.

Now we shall study system (11) in a neighborhood of the infinite sphere on the chart U3,
by considering z3 > 0 small, since we are interested in the behavior of the solutions which
tend to infinity on the z-axis. Indeed it will be used in the proof of theorem 2 in the following
section.

The z3-axis is invariant by the flow of (11), since for z1 = z2 = 0 the system reduces to

ż1 = 0, ż2 = 0, ż3 = bz2
3,

11
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Figure 8. Dynamics of system (1) near the sphere at infinity in the local charts U2 and V2: there
is no periodic orbits; the solutions turn its direction when crossing the plane z1 = 0.

hence the origin is asymptotically stable (resp. unstable) if b < 0 (resp. b > 0). Furthermore,
if b = 0 then the system has a line of equilibria in the z3-axis and the following proposition
holds.

Proposition 6. The equilibrium points (0, 0, z3) of system (11) are stable spirals normally
hyperbolic to the z3-axis, that is the linear part of the system at each equilibria (0, 0, z3) has
complex conjugate eigenvalues with negative real part and the corresponding two-dimensional
stable manifolds normal to the z3-axis, provided the following condition holds

1

z3
> r +

(σ − 1)2

4σ
. (12)

Proof. For b = 0 the Jacobian matrix of system (11) at the unique equilibrium point (0, 0, z3)

is given by
⎛
⎝

−σz3 σz3 0
rz3 − 1 −z3 0

0 0 0

⎞
⎠ ,

which has the eigenvalues

λ1,2 = −z3(σ + 1)

2
±

√
z2

3(σ + 1)2 − 4σ
(
z2

3 − rz2
3 + z3

)

2
, λ3 = 0

with corresponding eigenvectors

v1,2 = (
z3(1 − σ) ±

√
z2

3(σ − 1)2 + 4σ
(
z2

3r − z3
)
, 2, 0

)
v3 = (0, 0, 1),

from which the proposition follows, since we consider σ > 0 and z3 > 0. �

The flow in the local chart V3 is the same as the flow in the local chart U3 reversing the
time. So the same type of analysis as made above, taking into account that near the infinity in
the local chart V3 we have z3 < 0 (see remark 4), allows us to prove the following preposition.
We can prove the following proposition.

12
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Figure 9. Behavior of the solutions of system (1) with b = 0 near the sphere at infinity: (0, 0, z3)

are stable spirals normal to the z3-axis in the local chart U3 (left) and normally hyperbolic saddles
in the local chart V3 (right).

Proposition 7. The equilibrium points (0, 0, z3) of system (11) with reversed time (that is
in the local chart V3) are saddles normally hyperbolic to z3-axis, that is the linear part of
the system at each equilibrium (0, 0, z3) has two real eigenvalues with opposite signs and the
corresponding one-dimensional stable and unstable manifolds normal to the z3-axis.

From the propositions above we have that near infinity in the chart U3, that is for z3 > 0
small, the solutions behave like those shown in figure 9(a). Near infinity in the chart V3, that
is for z3 < 0 small, the solutions behave like those shown in figure 9(b).

3.4. Dynamic of system (1) on the sphere at infinity

Putting together the analysis made in the previous subsections we have a global picture of the
dynamical behavior of system (1) on the sphere at infinity: the system has two linear centers,
localized at the endpoints of the x-axis, and one circle of equilibria containing the endpoints
of the y- and z- axis (see figure 4). This proves theorem 1. It is important to note that the
dynamics at infinity does not depend on the values of the parameters σ, r or b.

We observe that the description of the complete phase portrait of system (1) on the sphere
at infinity was possible because of the invariance of this set under the flow of the compactified
system.

4. Heteroclinic cycles

4.1. Singularly degenerate heteroclinic cycles

For b = 0, the Lorenz system (1) reduces to

ẋ = σ(y − x), ẏ = rx − y − xz, ż = xy, (13)

which has the line of equilibria (0, 0, z), z ∈ R. Remember we are considering σ > 1 and
r > 1. The Jacobian matrix of system (13) at the equilibrium point (0, 0, z) is given by⎛

⎝
−σ σ 0

r − z −1 0
0 0 0

⎞
⎠ ,

13
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Figure 10. Singularly degenerate heteroclinic cycles of the Lorenz system (1) with b = 0,

σ = 10, r = 2. Time of integration: [−0.4, 10]. Initial conditions: (0.01, 0.01, z(0)) and (−0.01,

−0.01, z(0)), where z(0) ∈ {0,−20,−40,−60,−80}. Stepsize = 0.005.

which has the eigenvalues

λ1,2 = −σ + 1

2
±

√
(σ + 1)2 + 4σ(r − z − 1)

2
, λ3 = 0

with corresponding eigenvectors

v1,2 = (
(1 − σ) ±

√
(σ − 1)2 + 4σ(r − z), 2(r − z), 0

)
v3 = (0, 0, 1).

Providing z > r − 1 +
(σ + 1)2

4σ
, the eigenvalues λ1,2 are complex with the negative real

part. Considering also the corresponding eigenvectors, this implies that the solutions
locally spiraling toward the equilibrium point Q� = (0, 0, z) on a surface tangent to the
plane spanned by the eigenvectors v1,2, hence in a direction normal to the z-axis. If

r − 1 +
(σ + 1)2

4σ
> z > r − 1, then the eigenvalues λ1,2 are real and negative. Hence,

trajectories move toward the z-axis without spiraling. For z < r − 1, the eigenvalues λ1,2

are real with opposite signs. Then taking into account the eigenvectors v1,2, the system has a
normally hyperbolic saddle at the point P � = (0, 0, z). In the specific case in which z = r −1
the equilibrium point (0, 0, z) is more degenerated, having two vanishing eigenvalues. From
these considerations the proof of statement (a) of theorem 2 follows.

A detailed numerical study of the solutions of system (1) with b = 0, σ > 1 and r > 1 has
been made, which clearly indicate that the system present an infinite set of singularly degenerate
heteroclinic cycles. Each one of these cycles is formed by one of the one-dimensional unstable
manifolds of the saddle P �, which connects P � with the normally hyperbolic focus Q�, as
t → +∞. As the system presents an infinite number of normally hyperbolic saddles P � and
foci Q�, there exists an infinite set of singularly degenerate heteroclinic cycles. In figures 10,
11 and 12 some of them are shown: for each initial condition considered sufficiently close to
the saddle P � at the z-axis, a singularly degenerate heteroclinic cycle is created.

We observe that the saddles P � and the stable foci Q� extend to infinity on the negative
and positive parts of the z-axis, respectively, as shown in the analysis made near and at infinity
in section 3.
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Figure 11. Projections of figure 10 on the planes xz (a) and yz (b).
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Figure 12. Singularly degenerate heteroclinic cycles of system (1) with b = 0, σ = 10 and:
(a) r = 2, (b) r = 40 and (c) r = 400.

There is nothing special about the values of the parameters σ and r considered to generate
the singularly degenerate heteroclinic cycles shown in figure 10. Another values produce the
same type of cycles, provided we take b = 0. We emphasize only that the increasing values
of the parameter r causes an increase in the number of turns that Wu(P �) makes around the
z-axis, before tending toward Q�, as shown in figure 12.

The numerical results are also in agreement with the statements in [7]. Namely, they have
proven that for b = 0 and sufficiently large r there exists a singularly degenerate heteroclinic
cycle connecting the saddle at the origin with the normally hyperbolic focus (0, 0, z∗), for large
z∗. We verified this fact numerically. For example, take r = 20000 and the initial conditions
on the unstable manifolds of the saddle at the origin. In this case we have Q� = (0, 0, z�)
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Figure 13. (a) Singularly degenerate heteroclinic cycle of system (1) with b = 0, σ = 10 and
r = 20000 and (b) its projection on the plane xz.

with z� approximately equal to 40 000 (see figure 13). Observe also the increasing number of
turns in the spiraling behavior of the solutions around the z-axis.

From the considerations above the numerical result 3 is verified.

4.2. Infinite heteroclinic orbits

For b �= 0 small, r > 1 and σ > 1, system (1) has a saddle point at the origin, which is the
unique equilibrium point on the z-axis. The Jacobian matrix at this point has the eigenvalues

λ1,2 = −σ + 1

2
±

√
(σ + 1)2 − 4σ(1 − r)

2
, λ3 = −b

with corresponding eigenvectors

v1,2 = (
(1 − σ) ±

√
(1 − σ)2 + 4σr, 2r, 0

)
, v3 = (0, 0, 1).

Hence, for b < 0, the stability index of the saddle is 1. It is easy to check that the z-axis is
invariant under the flow of system (1) and from the calculations above it follows that the origin
is unstable along this axis. Moreover, the equilibria at the endpoints of the z-axis on the sphere
at infinity, which coincide with the origin in the local charts U3 and V3, are asymptotically
stable (see, subsection 3.3). Thus system (1) has two infinite heteroclinic orbits, one of them
consisting of the origin, the positive portion of the z-axis and of one equilibrium on the sphere
at infinity (the endpoint of the positive z-axis); the other one consists of the origin, the negative
part of the z-axis and of the endpoint of the negative z-axis (see figure 5).

For b > 0, the stability index of the saddle is 2, the origin is asymptotically stable
along the z-axis while the endpoints of this axis on the sphere at infinity are unstable (see,
subsection 3.3). Again the system has two infinite heteroclinic orbits on the z-axis (see
figure 5).

From these considerations we have proven statement (b) of theorem 2.

5. The existence of Lorenz-like attractors for b near zero

Through the numerical study carried out, we found Lorenz-like strange attractors of system
(1) for several values of the parameters r > 1 and σ > 1, near the singularly degenerate
heteroclinic cycles which exist for b = 0. In figure 14(a) it is shown one of them, obtained
for b = 0.15, σ = 2.3 and r = 7.8. We have taken the same parameter values and compute
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Figure 14. (a) Strange attractor created through the elimination of the singularly degenerate
heteroclinic cycles. Parameter values b = 0.15, σ = 2.3 and r = 7.8; (b) its x-coordinate
(t, x(t)) with initial conditions (5, 5, 5) and (5, 5.01, 5), showing the sensitive dependence on
initial conditions.

the x-coordinate of the solutions, that is the curve (t, x(t)), for the initial conditions (5, 5, 5)

and (5, 5.01, 5) in order to verify the sensitive dependence on initial conditions, which is one
of the main properties of strange attractors. The result is shown in figure 14(b). The solutions
differ in their colors (or gray scale) and actually show this sensitive dependence. The y- and
z-coordinates have the same behavior.

Also, in order to assure that the system presents chaotic behavior for these parameters
values (b = 0.15, σ = 2.3 and r = 7.8) we have calculated the Lyapunov exponents, following
the method presented in [15], which after 1000 iterations give

λ1 = 0.156 806 8907, λ2 = −1.063 121 4648, λ3 = −4.903 743 7581.

Thus we have a positive Lyapunov exponent, indicating the chaotic behavior of the system,
for these parameters values.

In figure 3(a) of the introduction we show the attractor obtained for b = 0.15, σ = 2.3
and r = 200. In figure 3(b) we show this attractor from another point of view: we have taken
the initial conditions on the unstable manifolds of the saddle at the origin and, in this way, we
can observe the spiraling behavior of the solutions around the z-axis, before tending toward
the attractor. We have also calculated the Lyapunov exponents for these parameter values,
which are

λ1 = 1.663 594 0216, λ2 = −0.476 972 8193, λ3 = −4.855 769 7656,

confirming the chaotic behavior shown in the phase portrait.
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